ABS HCR Initiative

With Fletch Kelly, Beef Key Account Manager Southern Australia Region

Profit From Genetic Progress

What's Important to a Beef Farmer's Breeding Program?

Angus Breeding Index	Lower Profitability	
omestic Index	Lower Profitability	
leavy Grain Index	Lower Profitability	
leavy Grass Index	Lower Profitability	
alving Ease Direct	More Calving Difficulty	
alving Ease Dtrs	More Calving Difficulty	
estation Length	Longer Gestation Length	
Birth Weight	Heavier Birth Weight	
00 Day Growth	Lighter Live Weight	
00 Day Weight	Lighter Live Weight	
00 Day Weight	Lighter Live Weight	
Aat. Cow Weight	Lighter Mature Weight	
Ailk	Lighter Live Weight	
ays to Calving	Longer Time to Calving	
crotal Size	Smaller Scrotal Size	
Docility	Less Docile	
FI-P	Lower Feed Efficiency	
FI-F	Lower Feed Efficiency	
arcase Weight	Lighter Carcase Weight	
ye Muscle Area	Smaller EMA	
ib Fat	Less Fat	
Rump Fat	Less Fat	
etail Beef Yield	Lower Yield	
MF	Less IMF	
ront Feet Angle	Less Sound	
ront Feet Claw Set	Less Sound	
ear Feet Angle	Less Sound	
ear Leg Hind View	Less Sound	
ear Leg Side View	Less Sound	

Sire: SUMMITCREST SCOTCH CAP 0B45 (IMP USA) Sire: BOOROOMOOKA UNDERTAKEN U170 (AI) Dam: BOOROOMOOKA REGALIA R133 (AI) (ET) Sire: BOOROOMOOKA UNDERTAKEN Y145

> Sire: B/R NEW DESIGN 036 (IMP USA) Dam: BOOROOMOOKA UAAISE U101 (AI) Dam: BOOROOMOOKA SPECIAL S15 (AI)

Sire: B/R NEW DESIGN 036 (IMP USA) Sire: YTHANBRAE HENRY VIII U8 (AI) (ET) Dam: G A R MAX 678

Dam: LAWSONS HENRY VIII Y5 (AI)

Sire: C A FUTURE DIRECTION 5321 (IMP USA) Dam: YTHANBRAE DIRECTION T270 (AI) Dam: YTHANBRAE Q256

Dairy vs. Beef......Are they that different?

						HA 4/17		0 Dtrs	0 Hrds	79 %	6Rel.
						Туре	-2	-1 0	+1 +	1.89	1.
USPA PTAg 0	04/17	TPI +2426	320	Dtrs 96 H	Irds	Mamme				1.36	
NM\$	604		Prod. Life	+4.6	86% Rel.	Legs / Feet				1.69	
Milk Ibs	+626	96% Rel.	DPR	+0.2	84% Rel.	Stature	Short			1.16	Tai
Fat lbs	+67	0.16%	Calv. Ease	6.1	99% Rel.	Strength	Frail			0.99	Stror
		0.08%		2.87		sody Depth	Shallow			1.20	Dee
Protein Ibs	+42	0.00%	Cell Count	2.01	93% Rel.	Angularity	Tight			1.49	Ope
						Rump Angle	High			-1.50	Slop
ABVg PRODU	JCTION 04	N	0	Dtrs OHr	ds	Thurl Width	Narrow			1.05	Wid
BPI	283	73% Rel.	ASI	160	82%	Rear Legs-Side Set	Straight	_		0.54	Curve
		-			02 /0	Rear Legs-Rear View	Curved Low			1.91	Straig
HWI	219	67% Rel.	Overall Type			Foot Angle	Low			1.95	Stee
TWI	293	72% Rel.	Mammary	(110)		Foot & Leg Score Fore Udder Attach.	Weak			1.81 2.24	Hig
Milk	-141		Calv. Ease	102	95% Rel.	Rear Udder Height	Low			2.24	Stro
Protein kg	+18	0.27%	Dtr Fertility	(105)	67% Rel.	Rear Udder Width	Narrow			2.00	Wid
Fat kg	+27	0.3%	Cell Count	134	79% Rel.	Udder Cleft	Weak			0.08	Sto
			1			Udder Dyoth	Deep			1.01	shall
Milking Sp	beed 100	emperamen	t 102 Likea	bility 104	68% Rel.	Front Teat Mace.	Wide			0.03	Clos
						Rear Teat Place.	Wide			-0.20	Clos
	DWD6	Bull Fertility	Rank ★		781 Observation		Short			-0.28	Lon

HEAL WORLD DATA

RWD

ABS REAL WORLD DATA BULL FERTILITY

is reported using the star ranking system. This chart explains general guidelines of how producers can utilize RWD Bull Fertility to target the use of individual ABS bulls in meeting their herd breeding goals.

RECOMMENDED USE

It's the real thing.

ABS Real World Data[®] Bull Fertility is a tool for customers to best capture the genetic potential of ABS sires.

ACCURATE information gathered from a comprehensive, robust collection process

RELEVANT and RELIABLE data from dairy producers, for dairy producers

TIMELY reports providing access to the most current fertility rankings on ABS sires

Since December 2012, ABS has used RWD Bull Fertility rankings in place of SCR. Make fertility breeding decisions by applying years of research data from real **herds** like yours.

ABS Global's RWD Bull Fertility is a source for genetic improvement and reproductive solutions within the dairy herd. Contact your local ABS representative to learn more.

Australian data

HARRIS {4}	+3.68	FRANSISCO	+1.71
ELTON	+3.55	MERRICK	+1.69
PELLO	+3.11	TAILOR	+1.54
JOSUPER	+2.76	THROTTLE	+1.53
SPOCK	+2.72	THEORY	+1.32
TOPSY	+2.11	CRUSH	+0.97

ABS RWD BULL FERTILITY RANKINGS

- **** TOP 10% 2-3% points above average fertility **** 20%
 - *** 40% Average fertility
 - ** 20%
 - ★ BOTTOM 10% 2-3% points below average fertility
 - ABS PREGNANCY KINGS: 4 or 5 star ranking based on 1,000+ inseminations

	EXAMPLES	PREGNANCY	5 STAR *****	4-STAR ****	3-STAR ***	2-STAR **	1-STAR *
HIGH or OPTIMAL FEMALE FERTILITY SITUATIONS	First or second service Natural heat	х	х	Х	х	х	Х
HIGH & AVERAGE HEIFER FERTILITY SITUATIONS	First and second service helfers	х	x	х	х	х	X
AVERAGE COW FERTILITY SITUATIONS	Second or greater service Synchronization program breeding	х	Х	Х	х		
LOW FEMALE FERTILITY SITUATIONS	Summer heat and humidity Timed Artificial Insemination (TAI) Later services Late latation cows Older cows	х	Х	х			
SPECIAL MANAGEMENT SITUATIONS	Large herds where pregnancy is the over-riding breeding factor Large number of open cows and herd needs to get caugit up Seasonal gracing Sustainability metrics imposed by market channels New, untested employees	x	х	x			

Acquired directly from cooperating **herds** through dairy herd records software programs, data are comprised of more than 18 million inseminations and 14,000 dairy sires. Data analyses are completed in-house based on a proprietary ABS process which uses only confirmed pregnancy events to determine bull rankings. The ABS RWD model accounts for age of the cow, lactation number, stage of lactation, AI service number or times bred, management and environmental related differences, and herdysea-season effects.

Evaluations for proven and ABS Primetime™ bulls are based on breedings to lactating cows. The ABS Sexation* evaluation includes heifer breedings only.

What About Beef?

- Australian Beef producers are among the most progressive, technology focussed farmers in the world
 - ✓ Global demand for Australian beef bulls
 - Globally renowned for producing high quality meat, and one of the top 4 global meat exporters
 - Closely monitored and supported by industry bodies such as MLA, Breed Societies
- Still fail to scientifically address one of <u>the most fundamental</u> issues that can ruin profitability in both seedstock AND commercial herds
- Poor pregnancy rate in breeding programs Heat Detect (HD), Fixed Time AI (FTAI) or Embryo Transfer (ET)

Conception Rates & Semen Fertility

Semen Fertility – What We Know Semen Fertility – What We <u>Think</u> We Know

- Semen is collected, and if it meets certain QC thresholds, it's fine to use in all forms of AI and ET programs
- Once semen is approved for AI, it will automatically result in a conception rate consistent with other bulls used in a program
- Semen that shows a high total motility (TM) score and sound overall rating will perform well in any type of program
- If semen performs well in a HD or ET program, it should perform well in a FTAI program as well

Conception Rates & Semen Fertility

- Nutrition ✓ Condition ✓ AI tech ✓ Vaccinations ✓ Environment ✓
- But why can we still get an average result?

Perhaps the greatest challenge in male reproductive physiology today is a recognition of the limitations in accuracy and precision of laboratory sire fertility estimates

– Mel DeJarnette

Conception Rates & Semen Fertility

- Semen Fertility Estimates are limited to two primary functions:
 - Serve as a barometer to estimate the adequacy of the semen quality control program
 - ✓ Serve as the basis for predictions of the fertility potential of a given sire if used in the imminent future
- Key word '*estimate*'
- Is there anything we can learn from the dairy industry in regards to sire fertility?
- Can we make this 'estimate' more accurate for beef sires?

ABS HCR Initiative

- Humble beginnings in February 2017 simply started collecting conception rate data from a number of key clients through PTIC reports
- Became intrigued by how our bulls performed in FTAI programs Then HD, ET data began to flow in.... We became confused!

- Initial Findings
 - ✓ Some bulls very well suited to FTAI programs, and some not so well
 - ✓ Likewise for use in HD, TAI and ET programs
 - ✓ Range of ~42-81% for individual average sire conception rate (ACR) in FTAI programs

While some bulls performed well in all programs, it became evident that for some bulls, an inverse relationship can be seen between FTAI Performance and ET, HD programs

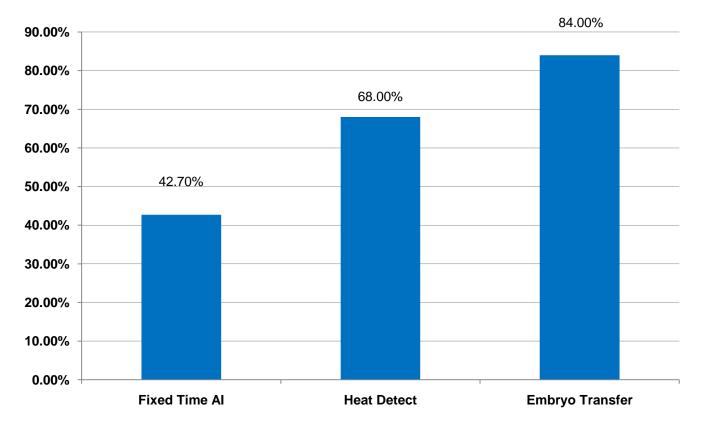


Figure 1: Variations in conception rate seen in Sire "X" for Fixed Time AI, Heat Detection and Embryo Transfer Programs respectively.

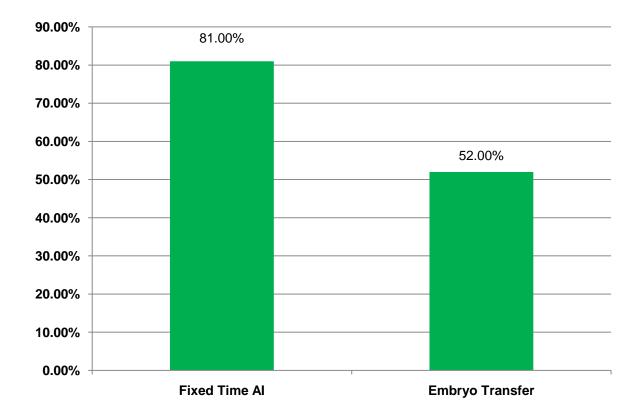


Figure 2: Variations in conception rate seen in Sire "Y" for Fixed Time AI and Embryo Transfer Programs respectively.

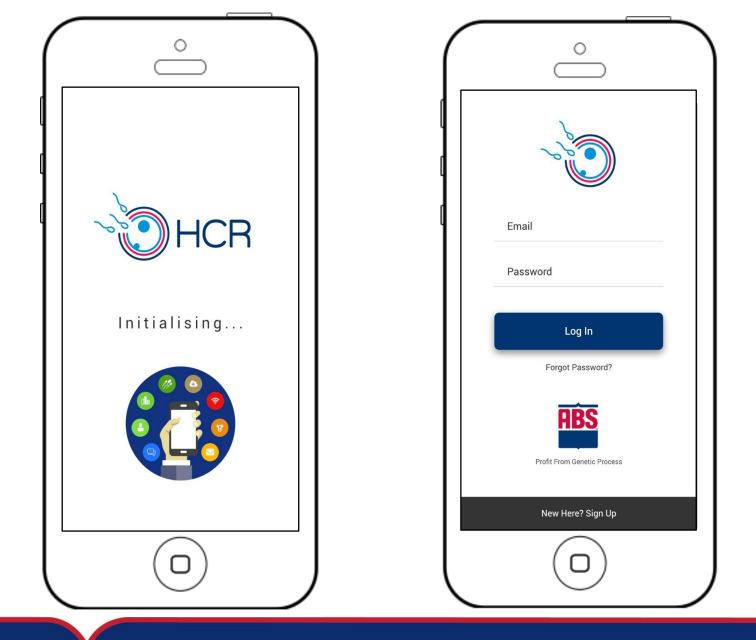
- Collected and analysed ~8000 individual pregnancy test results from around Australia over 3 years of joinings (2015-2017)
 - ✓ Data on all catalogued ABS domestic and US Angus Sires
 - ✓ Data on sires sold privately by studs
 - ✓ Data on sires from most other companies

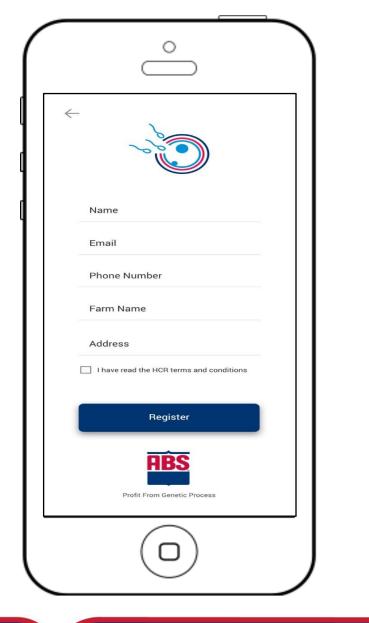
- Three key findings from post-thaw microscopic and PT data analysis:
 - Semen with a high total motility score will likely be effective in HD and ET programs but may not be as effective in FTAI programs
 - Semen with an average motility score seems to perform well in FTAI programs, and not so well in some ET and HD programs
 - ✓ Semen test reports are great for demonstrating whether semen is adequate in terms of QC (motility, concentration, defects), however is limited in its ability to predict performance in a reproductive program

Why Do We See This?

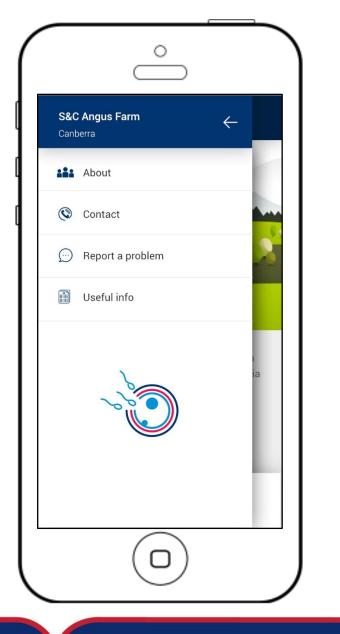
Potential Explanations

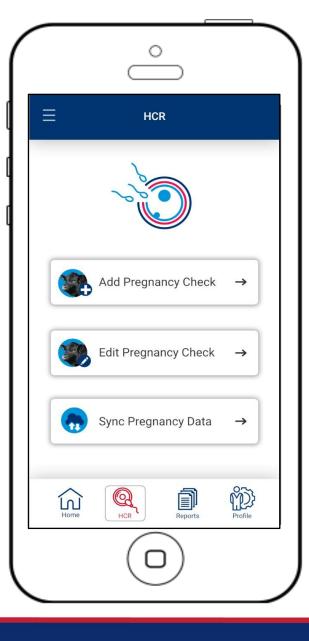
- Energy supplied to sperm within the extension mixture is finite
- Therefore, semen with a higher active total motility (TM) may metabolise this energy source at a faster rate, or effectively "burn out" prior to fertilisation
- Fine for Heat Detect and Embryo Transfer egg is ready ✓
- But for FTAI, ovulation may be delayed for several hours post AI
- Therefore semen with a lower TM rating may in fact "last the journey"

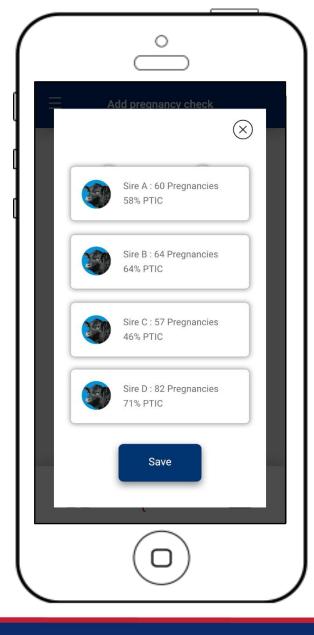


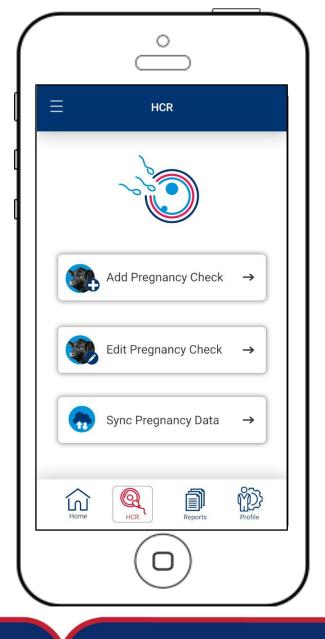

The App!

The first of its kind- Domestically and Globally

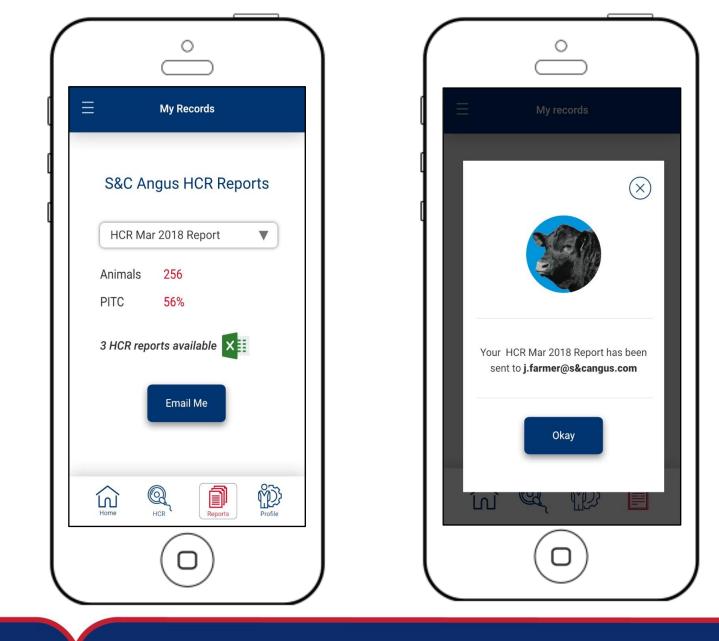








Add pregnancy check
Cow Heifer
PTIC Save Next
Home HCR Reports Profile



	d pregnan Edit Rec		(
S		ABCD 56% Fat	
3		ABCD 56% Fat	
S	Cow 12345	ABCD 56% Fat	
	ಲೆಸ್ನ	<u>1</u> 23	

Profit From Genetic Progress

Profit From Genetic Progress

Your HCR Report

Profit From Genetic Progress

ABS HCR Report - Spring 2017

Farm: S&C Angus, Canberra

Joined: 21/11/17

Sire ID	Sire	Number Joined	PTIC	Conception Rate	HCR Sire Average
29AN2001	А	56	33	59.00%	56.00%
29AN2002	В	100	62	62.00%	65.00%
29AN2003	С	32	24	75.00%	71.00%
29AN2004	D	71	43	61.50%	68%
		259	162	64.20%	

HCR – Into The Future

- A number of advancements in the pipeline
 - Regional reports focussing on FTAI results in your specific region highlighting climate & drought
 - ✓ Comprehensive ET reports
 - Multi breed availability Hereford, Wagyu, Simmental, Shorthorn, Charolais HCR reports available
- By 2020, goal to have over 100,000 PT results from ABS, private stud and other company AI sires
- Expand HCR program through our ABS Global business, with HCR data to monitor sire performance across multiple regions

HCR – FTAI Class Toppers

Summary

- Sire fertility is a key requisite for dairy farmers, so why not for beef as well?
- Shouldn't we be striving for better breeding program outcomes?
- Some sires are well suited to FTAI, others more so for HD and ET programs
- The HCR app is good for ABS, but it's even better for you the producer
 - ✓ Knowledge is power and knowledge drives profit
 - ✓ Access to PT reports at your fingertips
 - ✓ Monitor your reproductive performance year in, year out
 - Make educated decisions around what bulls will work well in your breeding program from empirical data

